Cleaner Air for Northampton

Northampton Low Emission Strategy (NLES)

Air Quality – What's the Challenge

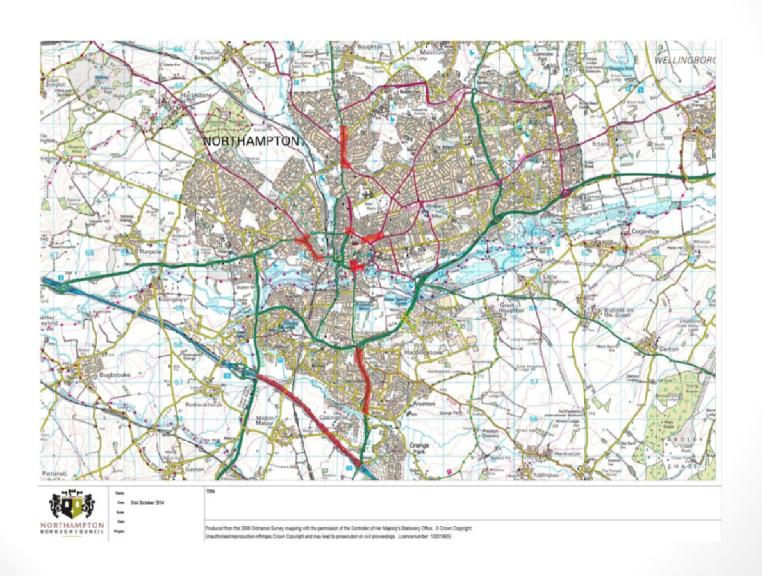
- Society based on easy movement of goods and people – primarily by road
- Individual choices
- Public pressure
- Understanding impact

Air Quality – Achieving a Balance

- Economic growth
- Housing / new development
- Planning and design
- Access to services
- Individual Challenges
- Health and Wellbeing

Air Pollution & Public Health

- Local road traffic contributes substantially to outdoor air pollution, particularly in busy towns and cities
- Emissions from industry, agriculture, commercial and domestic sources are also significant contributors
- Although air pollution has improved in recent decades, our understanding of its impact on public health has increased
- Air pollution still has a significant public health impact in the UK
- Adults and children with heart or lung problems and older people are particularly susceptible to the effects of air pollution
- Both <u>long</u> and <u>short</u> term exposure to air pollution affects health


Nitrogen Dioxide – Why we are here today

- Nitrogen dioxide (NO₂) and nitric oxide (NO) are gases produced during the combustion of fossil fuels
- In many parts of the UK, especially in urban areas, NO₂ levels near to busy main roads exceed European limits and UK Air Quality Standards
- Local Authorities have declared traffic-related Air Quality
 Management Areas (AQMAs) in affected areas

Nitrogen Dioxide – the health impacts

- Short-term exposure to high concentrations of NO₂ causes inflammation of the airways and lining of the lungs, leading to respiratory symptoms and decreased lung function
- Studies have shown associations between long-term exposure to NO₂ and adverse effects, including reduced life expectancy
- It was previously unclear whether these effects were caused by NO₂ or other pollutants from the same sources (e.g. traffic exhaust)
- Evidence of an association between exposure to NO₂ and adverse health effects has strengthened in recent years
- NO₂ itself is now thought to cause some of the health impacts found by epidemiological studies of air pollution mixtures
- There is increasing evidence linking long-term exposure with morbidity and mortality

Northampton AQMAs

The Public Health Burden

- Air pollution is considered to be a <u>contributory</u> factor, rather than the sole cause of deaths of individuals
- It is unlike smoking and alcohol, for which some deaths can be entirely caused by the risk factor (or there is a close link)

Risk Factor	Annual attributable mortality in England †	Deaths for which the risk factor is the main cause of death
Long-term exposure to particulate air pollution	25,000	Small number*
Alcohol	22,481	6,000
Smoking	79,700	43,400**

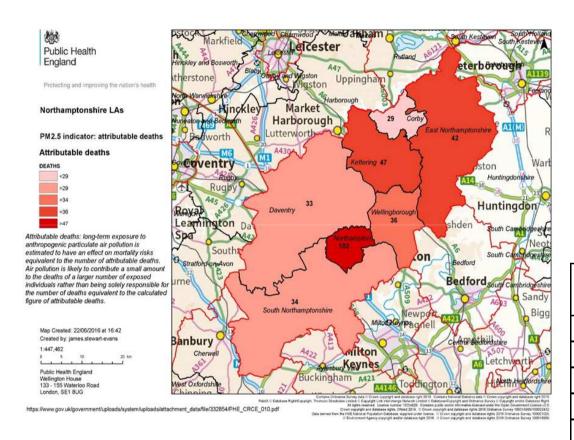

⁺ Attributable deaths – The number of deaths from both direct (sole) cause and for which the risk factor is a contributory factor

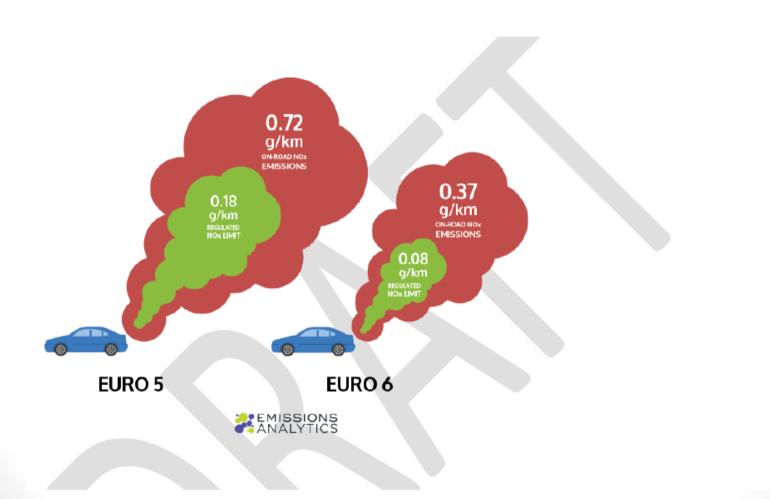
Table reproduced from Public health matters: Understanding the impact of particulate air pollution

^{*} Contributory factor only

^{**} Smoking is responsible for more than three-quarters of deaths from the following conditions: cancer of the trachea, lung and bronchus; cancer of the larynx; chronic obstructive lung disease; and chronic airway obstruction

The Public Health Burden

	Number	Rate per	
	Killed	100,000	
Northamptonshire	82	3.83	
Corby	7	3.57	
Daventry	22	9.28	
East Northants	7	2.63	
Kettering	15	5.16	
Northampton	8	1.21	
South Northants	17	6.43	
Wellingborough	6	2.62	


How can the NLES address air quality?

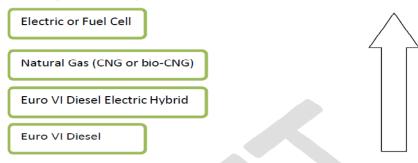
- There are no silver bullets when it comes to resolving air quality issues
- Intervention across a number of areas/sectors is necessary

Theme 2 – Influencing Policy, Strategies and Plans

- Guidance linked to planning A mitigation as standard approach based on size and scale of development
- Travel Choice and Promoting Active Travel (switching to walking or cycling)
- Public Sector procurement and leading by example scoring
 3rd party suppliers with better environmental credentials
- Local Authority Fleets leaning towards cleaner vehicles through procurement cycle renewal

- Private car ownership Facilitating the shift to cleaner alternatives by –
 - Applying for government funding and support
 - Developing recharging/refuelling infrastructure
 - Awareness raising
 - Developing policy around preferential parking rates for ULEV

- Taxi and Private Hire Vehicles
 - Investigating the setting of emission standards through licensing
 - Application for funding support from OLEV to support low emission infrastructure (already submitted)
 - Demonstrations of ULEV to highlight emissions and cost benefits (whole life costing)


Figure 10 – Total Cost of Ownership (TCO) of selected diesel, petrol, hybrid and electric cars

Vehicle	Leaf (hatchback)	Octavia (hatchback)	Octavia (hatchback)	Prius (hatchback)
Manufacturer	Nissan	Skoda	Skoda	Toyota
Model details	80kw Visia 5dr	1.4TSI 140 SE 5dr	1.6TDI 105 S 5dr	1.8 VVT-I T3 5dr
Fuel type	Electric	Petrol injection	Diesel turbo	Petrol hybrid
Power (kw)	80	102.12	76.96	99.16
0-60mph (sec)	11.5	8.4	10.8	10.4
Euro std	NA	6	6	6
Price	£ 21,490	£ 18,860	£ 18,360	£ 21,995
3yr RV	£ 7,820	£ 7,075	£ 8,185	£ 12,665
New/used	New	New	New	New
Miles pa	25,000	25,000	25,000	25,000
mpg	NA	35	47	52.2
litres/km (kwh/km)	0.173	0.081	0.060	0.054
Tax band	Α	D	Α	Α
Depreciation 3yrs	£ 13,670	£ 11,785	£ 10,175	£ 9,330
Tax £pa	£ -	£ 110	£ -	£ -
Fuel £pa	£ 519.00	£ 3,959	£ 3,054	£ 2,654
Servicing £pa	0	£ 185	£ 179	£ 202
Nox damage £/yr	0	£ 11.06	£ 80.93	f 7.41
PM damage £/yr	0	£ 17.54	£ 17.54	£ 17.54
CO2 damage £/yr	£ 144.94	£ 308.95	£ 268.16	£ 207.15
TCO for 1 yr (no depr)	£ 664	£ 4,591	£ 3,599	£ 3,089
TCO for 3 yrs inc depr	£ 15,661.82	£ 25,558.99	£ 20,973.21	£ 18,596.38

- Buses
 - Use of bus partnership agreement to;
 - Retro-fit older buses to improve emissions
 - Develop a bus emission standard for Northampton?

Figure 13 - Suggested Bus Emission Standard for Northampton

Buses to be replaced by technologies outlined in green (in increasing order of preference)

Existing buses to be retrofitted as outlined in orange

Bus technologies not considered suitable for use in the AQMAs

Euro IV Diesel (without SCR or DPF)

Euro III Standard Diesel

Euro II Standard Diesel

- Commercial Vehicles and Freight
 - Difficult to directly influence (procurement is a commercial decision)
 - Location of alternative re-fuelling stations (in conjunction with buses?)
 - Working with operators to consider whole life costing
 - Use of planning guidance so new development introduces low emission vehicles/infrastructure
 - Use of fleet operators recognition scheme to reward businesses that have a lesser environmental impact
 - Encourage transport by rail for longer journeys

Summary

- The local authority has a legal obligation towards air quality and must produce an action plan
- The Council can influence some areas linked to air quality (planning & taxi licensing), but many issues are outside direct control and will require goodwill and enthusiasm to influence external 3rd parties.
- Measures to improve air quality need to be taken in conjunction as isolated actions are unlikely to be sufficient on their own.